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Benchmarking 

 

 Benchmarking campaign between different codes: OPAL, SCODE, 

ZGOUBI, EARLIETIMES and MAUS. 

 

Betatron tunes from 11 to 139 MeV (left 
to right) calculated with several codes. 
Courtesy S. L. Sheehy 

 

 Lots of work but yielded excellent 

results so far. 

 

 The idea is to use the same 2D or 3D 

field maps for the simulation. 



Mean field index of the magnets 
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 An extension of the mean field index k as defined by Symon consists in 

introducing its azimuthal variation in the following way: 

F-magnet D-magnet 



Mean field index of the magnets 
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 An extension of the mean field index k as defined by Symon consists in 

introducing its azimuthal variation in the following way: 

F-magnet D-magnet 

Realistically, the field index of the magnet changes radially and azimuthally. 



Preliminary finding 
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 If 𝜅 = 𝑘𝐹 − 𝑘𝐷 ≠ 0,  the tunes are energy-dependent and the orbits are 

not similar. 

 

 

 Non scaling FFAG. 

 

 

 

 

 

 

 An accurate solution of the non-linear equation of motion is thus needed. 

 

  Calculate an approximate solution of the tunes and compare with the 

numerical simulations (using the tracking code Zgoubi). 



Bogoliubov method of averages (non-scaling) 

 Using the BKM’s method of averages, one can compute 

approximately the frequencies of the betatron oscillations and their 

dependence on the average field index of the F and D magnet.  One 

obtains: 

where the subscript i denotes the F-magnet, the D-magnet and the drift and: 

; 

1st order index of similarity 2nd order index of similarity 
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Focusing due to the average magnetic gradient 

Radial focusing from centrifugal forces 

x-motion focused in magnets with positive curvature and defocused in magnets with negative curvature. 



Fundamental property 

 Define a closed orbit, i.e. for a given energy, in a cylindrical 

coordinates system: 
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 Compute the first and second order index of similarity: 

 It results that, for any closed orbit: 

i denotes the F-magnet, 

the D-magnet and the 

drift 



 Using the previous 

result, one obtains: 
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Bogoliubov method of averages (non-scaling) 

 All parameters are susceptible to change when scaling imperfections 

introduced: the non-scaling of the orbits introduces a change of the average 

magnetic gradient. 

 

 It does introduce a change of the magnetic flutter as well as the index of 

similarity β of the orbits. 



 Using the previous 

result, one obtains: 
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Bogoliubov method of averages (scaling) 

 If 𝑘𝐹 = 𝑘𝐷, one recovers the same expression as Symon, except for one 

term:  

 

 This term is the contribution of the centrifugal forces and is equal to 1, 

only for a circular orbit. 



 Using the previous 

result, one obtains: 
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Bogoliubov method of averages (scaling) 

 If 𝑘𝐹 = 𝑘𝐷, one recovers the same expression as Symon, except for one 

term:  

 

 This term is the contribution of the centrifugal forces and is equal to 1, 

only for a circular orbit. 
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ZGOUBI tracking model: Approach (1/4) 

1) Generate a median plane field map  

      for a given (x, 𝑘𝐹 , 𝑘𝐷).  

 

2) Search for the closed orbits. 

 
3) Compute the tunes 

Loop on x 

Loop on 𝑘𝐹  

Loop on 𝑘𝐷  
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ZGOUBI tracking model: Approach (2/4) 

1) Build the model by generating a median plane field map for a given 

(x, 𝑘𝐹 , 𝑘𝐷). Tracking is performed using ZGOUBI: Median plane anti-

symmetry is assumed and the Maxwell equations are accommodated 

which yields the Taylor expansions for the three components of the 

magnetic field. 

The field writes in the following way: 

- x is a scale factor to change the FD ratio 
- 𝑘𝐹 is the average field index of the F-magnet 
- 𝑘𝐷 is the average field index of the D-magnet 

NB: if 𝑘𝐹 = 𝑘𝐷, the field writes in the standard form of a scaling FFAG.  

Separable function: 
𝐹𝐹 𝜃 . 𝐹𝐷 𝜃 = 0 
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ZGOUBI tracking model: Approach (3/4) 

2) Search for the closed orbits between injection energy and extraction 

energy: 30 closed orbits between 𝐸𝑖𝑛𝑗 = 11 𝑀𝑒V and 𝐸𝑒𝑥𝑡 = 100 𝑀𝑒𝑉. 

Magnetic field along several closed orbits Example of several closed orbits: the 
lattice consists of 12 DFD triplets. 
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ZGOUBI tracking model: Approach (4/4) 

3) For each closed orbit the number of betatron oscillations in both 

planes is calculated using the Zgoubi Discrete Fourier Transform 

(DFT). 

As explained earlier, the main objective of this study is to explain the 

origin of the tune variations in FFAGs. Therefore, we introduce two 

new quantities in the calculation of the tunes: the average as well as 

the RMS tune variations over the closed orbits (NCO): 



16 

ZGOUBI tracking model: results 

Contour plot of the average cell tune.  Contour plot of the tune variations.  

In the vicinity of the central line, i.e. 𝑘𝐹 = 𝑘𝐷, the Symon formula is 

qualitatively verified. 

Can we explain the stability diagrams? Why does it shrink linearly 

with k? 
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Comparison analytical vs simulation results 

 Comparison of the Zgoubi 

results (blue) with the 1st 

order bogoliubov method of 

averages shows good 

agreement. 

 

 Two regimes can be 

distinguished depending on 

the sign of 𝜿 = 𝒌𝑫 − 𝒌𝑭. 

 

 The tune variations vanish at 

𝜿 = 𝟎. 

 

 Symon formula fails in the 

horizontal plane. 



Application to the KURRI 150 MeV FFAG 

Why the Symon 

formula fails? 
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Application to the KURRI 150 MeV FFAG 

7.4 <𝛽 < 8.4 

For KURRI 

Index of similarity β computed from the TOSCA fieldmap tracking Analytical expression of β as a function of the scalloping 

of the orbit. 

Does this explain why the tunes increase with the energy in the horizontal plane? 
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Application to the KURRI 150 MeV FFAG 

Yes, the monotonic 
behavior of the tunes 
in the horizontal 
plane is due to the 
increase of the 
horizontal restoring 
force due to the non-
scaling of the orbits. 
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Key finding 

I. In presence of scaling imperfections, the number of betatron oscillations 

per turn increases (resp decreases) with the energy if 𝜿 = 𝒌𝑫 − 𝒌𝑭 > 0 

(resp 𝜿 < 𝟎). 

 

II. Besides, the variations of the square of the number of betatron 

oscillations are, to the first order, proportional to |𝜿|. 
 

These results are obtained from simulations using different fringe fields. 

Can we prove the above results analytically? 

Reminder, for KURRI, 𝑘𝐷~9 while 𝑘𝐹~7.6 thus 𝜅>0.  
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Proof 1/2 
 

 It can be shown, from what preceded that the tune variations in the 

horizontal plane are pre-dominantly due to the change of the horizontal 

restoring force due to the non-scaling of the orbits: 

 

 Similarly, in the vertical plane, the tune variations are pre-dominantly due 

to the change of the magnetic flutter due to the non-scaling of the orbits: 

𝐴3 =
< 𝐵𝐷>

< 𝐵𝐹>
 < 0 

𝐴4 = 1 + 𝐴3 > 0 

This proves the first part of the property. 

Only valid if 
𝐹𝐹 𝜃 . 𝐹𝐷 𝜃 = 0!  
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Proof 2/2 
 

 It can also be shown, from the previous results that: 

This proves the second part of the property. Furthermore, one demonstrated that the tune variations increase 
linearly with the radial excursion of the magnets in both planes. Hence the interest of scaling FFAG with small 
orbit excursion (second stability region). 
 
Vanishes when the FD ratio goes to zero. Expected since one of the two magnets is removed!  

  

𝑅0 is the injection 

radius 
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Verification tests 1/3 
 

 Start from a scaling FFAG lattice: 𝑘𝐹 = 𝑘𝐷 = 7.6 and 𝐴3 = −0.55   

This yields 𝛽𝐹
𝑠 = 10.7 

 Introduce an error such that 𝜿 = 𝟎. 𝟒 

As shown earlier,  

Good agreement between 

the numerical simulations 

and the analytical formula. 
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Verification tests 2/3 
 

 Start from a scaling FFAG lattice: 𝑘𝐹 = 𝑘𝐷 = 7.6 and 𝐴3 = −0.55   

This yields 𝛽𝐹
𝑠 = 10.7 

 Introduce an error such that 𝜿 > 𝟎 

As shown earlier,  

Good agreement except for 

large 𝜿-values . 
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Verification tests 3/3 

For the same FD ratio at injection and the same average field index of the 

magnet (or same type of error), is there a field profile of the magnets that 

is less sensitive to these types of imperfections? 

Field along the orbit in one cell.  

Keeping the same average magnetic 
flutter for the D-magnet means the 
width of the magnet can be reduced 
while increasing the amplitude of its 
field. 
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Verification tests 3/3 
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magnet (or same type of error), is there a field profile of the magnets that 

is less sensitive to these types of imperfections? 

Field along the orbit in one cell.  

Keeping the same average magnetic 
flutter for the D-magnet means the 
width of the magnet can be reduced 
while increasing the amplitude of the 
field. 

Tune diagram for various cases. 
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Verification tests 3/3 

For the same FD ratio at injection and the same average field index of the 

magnet (or same type of error), is there a field profile of the magnets that 

is less sensitive to these types of imperfections? 

Field along the orbit in one cell.  

Keeping the same average magnetic 
flutter for the D-magnet means the 
width of the magnet can be reduced 
while increasing the amplitude of the 
field. 

Tune diagram for various cases. 

Yes, the best case is the one for which the second order moment of 
the magnetic flutter is minimum, i.e.  < 𝐹𝐷

2 𝜃 > is minimum, as 
shown earlier.  
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Explaining the stability diagram 

Upper left side: radial pi-mode stop 

band resonance, or phase 

advance=180 deg. 

Lower right side: vertical phase 

advance=0 deg. 

Why does it shrink linearly? 

Large 𝜿-values are less tolerant to field 

imperfections. However .. 



30 

Compensation of tune variations in FFAG 

 

 Main idea: if we create alternating scaling imperfections, by 

alternating 𝜿, one may obtain a fixed tune machine.  

I. In presence of scaling imperfections, the number of betatron oscillations 

per turn increases (resp decreases) with the energy if 𝜿 = 𝒌𝑫 − 𝒌𝑭 > 0 

(resp 𝜿 < 𝟎). 

 

II. Besides, the variations of the square of the number of betatron 

oscillations are, to the first order, proportional to |𝜿|. 
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Concept of the non-scaling fixed tune FFAG 

Replace the 12-fold symmetry by a 6-fold symmetry. 
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Concept of the non-scaling fixed tune FFAG 

Using the mid-plane field map (or the analytical model FFAG), one can show that 

alternating 𝜿 allows to alternate the phase advance between the upper and lower regions 

so that the tune becomes constant.  

Magnetic field along several closed orbits in the 
ZGOUBI model. 
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Concept of the non-scaling fixed tune FFAG 

The magnetic flutter of the orbits is not energy-independent inside any 

magnet. However, it becomes constant when calculated over the width of 

the two DFD triplets combined. 
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Phase space 
1st cell 

2nd  cell 
Scaling FFAG with 𝒌𝑭 = 𝒌𝑫 = 𝟕. 𝟔 Non-Scaling FFAG with  

𝒌𝑭, 𝒌𝑫 = 𝟕. 𝟔, 𝟕. 𝟒 , (𝟕. 𝟔, 𝟕. 𝟖) 

Horizontal phase space at 100 MeV including the separatrix. The limit of 

stable motion is obtained when the particle is lost in less than 1000 turns. 
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Dynamic Acceptance 

Generate a scaling 

FFAG lattice and a 

non-scaling one that 

have the same fixed 

tunes.  
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Dynamic Acceptance 

For the same tunes, the Dynamic Acceptance of the scaling and the 

non-scaling lattice are the same. 
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Next 
 

 

 

Reverse the problem: defining arbitrary functions of the tunes 

in both planes, can we obtain the expression of the magnetic 

field? 
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Thank you! 
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DA of the non-scaling FFAG 
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𝜿 = 𝒌𝑫 − 𝒌𝑭 

𝜿 = 𝟎  scaling 

𝜿 ≠ 𝟎  non-scaling 

The amplitude of 𝜿 should not exceed 10 % of the average field index of the magnets in 
order to maintain a reasonably large horizontal DA (> 50 π mm.mrad). 

Although large 𝜿 values can be explored and the stability limit overcome, the main finding 
is that the DA decreases with increasing 𝜿. 


